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ABSTRACT 
Given a set of consecutive slices resulting from a non-invasive examining device, there is an expectation to be able to 
reconstruct the 3D original object regardless if it is a human organ or the channeling of underground petroleum 
resources. The slices however, identify a set of curves, which need to be properly connected to give rise of a coherent 
representation of the object. This analysis is made by a correspondence algorithm within a 3D reconstruction 
software. This paper presents �-connection, a simple and flexible algorithm for the correspondence problem. �–
connection relies on the well-known heuristic approach of proximal curves. Tests have shown that �-connection 
grows linearly with the size of the raw-data (the slices) and can be fine-tuned by a user-defined parameter to produce 
a 3D model. The heuristic, advantages and limitations of �-connection will also be shown in detail.   
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1. INTRODUCTION 
The increasingly popular use of non-invasive 
measurement devices, such as Magnetic Resonance 
Imaging (MRI) and Computerized Tomography (CT), 
has made it possible to visualize a sequence of planar 
sections of three-dimensional objects. This fact has 
motivated the development of many (such as [1], [2], 
[3], [5] and [7] which will be presented later) three-
dimensional object reconstruction techniques. Three-
dimensional reconstruction became a very interesting 
and importante research technique since it builds a 3D 
model of the object that is being analyzed through the 
use of two-dimensional images.  

3D reconstruction can be executed in order to obtain 
various information about the original model, basically 
for two reasons: 

• To study the model´s structure, the relationship 
among parts, understanding of the whole and the 
existence or non-existence of certain formations 
(tumors, swellings, etc.), and; 

• To obtain measurable characteristics of the model 
(volume, area, length, etc.). 

 
 

Figure 1 illustrates a slice obtained from a CT scanner 
already treated in order to separate the contours for the 
reconstruction (a); the reconstruction process executed 
over two of these slices (b) and; the finished process (c) 
of a skull [2].  

 

 
Figure 1: The 3D Reconstruction Process on a 

Skull: (a) one slice, (b) two connected slices and (d) 
the complete model [2]. 

 
Figure 2 shows the sequence of two-dimensional slices 
that represent blood veins (a) and the interpolation (b) of 
these slices generating all the corresponding 
channels/veins [3].  

This is an example of reconstruction where the model 
visualization as a whole is more important than the 
intrincacies and details between slices.  

 



 
 
 
 
 
 
 
 

Figure 2: The 3D Reconstruction of Veins: (a) the 
set of slices and (b) the reconstructed model [3]. 

 

It can be observed that this division leads to two possible 
approaches regarding the application of the 3D 
reconstruction techniques: one aimed at the object 
visualization, and the other at accurately representing the 
object. For the former objective, the reconstruction 
process can be done in a simpler way, without the need 
to accurately represent the saddle point on the branching, 
for instance. On the other hand, if the reconstruction 
does not take into account the accuracy of the 
consequent branching and surfacing, any measurements 
taken from the model can be misleading. 

Reconstruction techniques aiming the visualization of 
structures are useful to applications such as the 
identification of increasing density of capillaries (several 
grouped ramifications), a congenital bad formation (the 
appearance of a strange geometry), tumors (protrusions 
on the geometry) or even undesired/unexpected 
connections. These applications take advantage of the 
power such techniques have to make visible a formation 
whose visualization would be, in other ways, invasive. 
For these techniques the flexibility and the rules of 
correspondence identification are of great importance 
along with the fact that a fast response is needed.  

This paper will present an algorithm to identify the 
correspondence between curves in consecutive slices 
aimed at object visualization and focused on flexibility 
and efficiency. The text will initially identify the 
problem and then, show related approaches. After that, 
heuristic solutions will be thoroughly discussed so that, 
in the following section, the �-connection algorithm will 
be presented. Implementation details, results, analysis 
and the conclusion will finish this text. 

2. PROBLEM DEFINITION 
The 3D reconstruction solution is usually performed 
considering three clearly separated steps 
(correspondence, branching and tiling) having a set of 

techniques that are specified to decide the geometry and 
topology of the final model. 

The correspondence problem arises when there is more 
than one curve in each of parallel consecutive slices and 
some of them must be connected to generate the 3D 
object model. The correspondence problem can be stated 
as: 

Given a set of i curves Cij, where i=1,…,n and n 
is the number of different curves in the plane 
Xj, identify all subset of curves in plane Xk that 
correspond (must be connected) to some in 
plane X(k+1). 

 

The correspondence step has been considered the main 
problem of the 3D reconstruction from planar sections 
[1]. Figure 3 presents 3 of 11 possible correspondence 
solutions that can be generated from the two initial 
sections shown on the upper-leftmost corner of the 
figure.  

 

 

 

 

 

 

 

Figure 3: Three Examples of Correspondence 
Alternatives (a), (b) and (c) from Slices x1 and x2. 

 

In one of the cases (a) each curve on a plane is 
connected with only one nearest curve on the next plane; 
in another, one of the curves from the inferior slice is 
connected with the two others on the superior slice, 
while the other is connected only with the nearest (b) 
and; on the last illustration only one of the curves form 
the inferior slice is connected with the curves of the 
superior plane (c). 

3. RELATED WORK 
Various techniques have been developed to deal with the 
correspondence between curves. The following can be 
highlighted: 



The deformable models approach uses geometry, 
physics and the theory of approximation for 
reconstruction. The geometry is used to represent the 
shape of the object, the physics impose confinements on 
how the shape can vary in space and time, and the theory 
of approximation provides mechanisms and techniques 
to approximate the reconstructed models to the original 
measured data. On this method, deformations are made 
on an initial model, to reach the final object. 

McInerney and Terzopoulos [4] presented a 
reconstruction work applied to medicine that uses 
deformable models, and proved to be efficient to start 
from a sphere and promote deformations and 
approximations until a desired model is achieved. One 
advantage of this technique is that the image 
segmentation process, where a polygonal representation 
of the curves from the original image is obtained, is part 
of the reconstruction process. The authors asserted that 
deformable models overcome many of the limitations of 
low-level techniques for image processing, providing 
compact and analytical representations of the object's 
shape. However, the reconstruction process is not an 
isolated process and it can be said that the reconstruction 
techniques through deformable methods use more image 
processing concepts than geometric modeling. 

The implicit approach uses an implicit function to 
interpolate the curves and generate the object, in a way 
that the object surface (the edge of the object) is on the 
zero set of this function, that is, in f(x,y)=0. This 
function is determined from the interpolation of the 
functions of each parallel planar section (slice) that 
contain the curves to be connected. 

Peixoto and Gattass [5] describe the implicit approaches 
through two steps: the definition of the functions that 
represent the curves' slices, called field functions, and; 
the interpolation of these functions to form the implicit 
function that will represent the final object's surface as a 
whole. 

For this approach the matrix-based (also raster-based) 
representation of curves is more adequate, since there is 
a natural correspondence between the matrix 
representation and the implicit function, i.e., a curve 
represented as a matrix can be defined as the set of 
points (x, y) of the slice, such that f(x, y) represents each 
field function used to generate implicit function.  

The correspondence definition step does not have much 
flexibility in the implicit approach because (i) they are 

automatically defined by the function; (ii) the result is a 
unique interpolation solution for a given initial set of 
curves [5], not all alternatives and; (iii) the connection 
determination for this type of approach is considered one 
of it’s major problems [6: page 3]. Implicit approaches 
deals with the reconstruction problem in an automatic 
way but it does not generate all the possible models from 
a set of curves. 

Approaches that use heuristics deal with the 
correspondence criteria with more flexibility. According 
to Peixoto and Gattas [5], the decision of the 
correspondence can be taken computing somehow the 
distances between curves. 

The heuristics used in the work of Barequet and Sharir 
[7] decide on the correspondence of the curves based on 
a XY projection of two consecutive planes. The heuristic 
is the following: if there is an intersection on the 
projected area of the curves they are connected, 
otherwise they are not.  

The work of Treece and colleagues [6] is based on the 
calculation of the distance between regions of the curves. 
To each plane containing the curves a set of discs is 
created. Internal discs are used to represent internal 
regions of each curve and are considered to loosely 
represent the shape of a curve.  

Figure 4 shows an example of slices with many curves  
(one at the bottom slice and three at the top one, see left-
most drawing); their XY projection (shown in the 
center), and; the resulting correspondence (at the right-
most drawing one can see that the bottom curve was 
found to correspond to two of the top ones). 

 

 

Figure 4: Curves on two slices are projected in one 
plane and the resulting correspondence. 

 

To each disc, its center is calculated, called centroid, 
which will be used to calculate the distance between 
each pair of discs of two consecutive planes. The 
correspondence calculation is based on the distance of 
each pair of discs. The heuristics defined in this 



algorithm is the following: the regions on two 
consecutive planes will be connected if the distance 
between the related discs is smaller than the radius of 
both discs. Then, to each two consecutive planes, a 
comparison of distances between the centroids of each 
pair of discs is done. In this way, the necessary distance 
to connect to discs may vary without user control. Also, 
the correspondence does not take into account the whole 
area of the curve, but each region represented by a disc. 

Another technique that uses heuristics is proposed by 
Cuadros-Vargas [1]. It is a volumetric reconstruction 
strategy called �-Connection that has the flexibility to 
produce a family of objects constructed from the same 
set of planar sections, making it possible to obtain 
multiple options of a final object.  

To solve the correspondence problem the algorithm 
performs a calculation of the smaller distance between 
each two curves in terms of tetrahedrons. Afterwards, it 
takes a user defined integer parameter, called β, to 
perform the heuristics: if the distance between any two 
curves (measured by the number of inbetweening 
tetrahedrons) is less than the value of the � parameter 
defined by the user, then these curves are connected.  

 

 

 

 

 

 

Figure 5: Reconstruction via ββββ-connection [1]. 

Figure 5 shows different connection solutions resulting 
from the strategy proposed by [1]: Beginning with the 
curves situated in parallel sections (a); in the first 
solution (b) the value of the � parameter is less than all 
the distances between the curves of two consecutive 
planes, with no connection occurring; in the second 
solution (c) the value of the parameter � is 3, then all the 
curves of two consecutive planes with distances between 
each other less than or equal to 3 are connected, and; 
when the value of � is greater than the distance between 
any curves of two consecutive planes all of the curves of 
those consecutive planes are connected (d). 

An important feature of the work of Treece and 
colleagues [6] is that the regions represented by the discs 
will only connect with the other closest regions of each 

consecutive plane if this relation is reciprocal; this 
allows regions to be left without connection. These 
authors also emphasize that traditional branching and 
correspondence problems are combined by determining 
“regions correspondence”. For Barequet and Sharir [7] it 
is not necessary for two curves to overlap to connect to 
each other.  

According to Cuadros-Vargas [1], the �-Connection 
reconstruction technique offers more flexibility on the 
choice of the connected components, since from a same 
set of planar sections it is possible to obtain different 
shapes of objects, which is difficult through other 
algorithms in the literature.  

Comparing the heuristic approaches presented, one 
notices that all existing algorithms employ some form of 
distance calculation between curves: 

• This can be a very detailed and time consuming 
comparison of point by point of the curves in search 
for the smaller edges (as in [8], apud [1]);  

• Indirectly, by enclosed or enclosing discs (as in [6]);  
• Indirectly by the resulting overlapping of the 

projections that occur when the curves are next to 
each other (as in [7]).  

• Ingenious calculations, that take into account the 
distance in units of volume (tetrahedron), has also 
been tried and by-producing tiling with great 
flexibility of results with the cost of greater 
computational demand (as in [1]).  
 

This paper presents another solution to the calculation of 
the curves proximity with the same flexibility as in [1] 
but keeping the correspondence stage totally isolated 
from any others.  

4. THE ∆∆∆∆ CONNECTION SOLUTION 
The �-connection algorithm has the following scope for 
its proper functioning: 

• Curves represented in a polygonal form (vectorized) 
with the same orientation; 

• Convex and not self-intercepting concave curves; 
• Closed non self-intercepting curves and that do not 

contain other curves in its interior; 
• Resulting object represented in Boundaring-

representation, using VRML; 
• The saddle point of the branching calculation is not 

dealt with; 
• The preferential application is structure 

visualization (such as channels). 



The �-connection solution defines the correspondence of 
the curves in 3 steps: 
1. The centroid of each curve is calculated regardless 

its slice (Z value). 
2. A matrix is built with the Euclidian distances of the 

curve’s centroid in consecutive slices altogether 
with the minimum and maximum distances (�min, 
�max); 

3. Given a user-defined �, the heuristics is evaluated. 
 

Figure 6 illustrates, from a projection of two planes, the 
distances between two centroids of the curves (labeled 
d[x,y]) and the matrix where they are stored. The curves 
drawn in dotted lines belong to the projected plane.  

The minimum and maximum distances in the matrix 
have the purpose of informing the user which is the 
interval of distances among all the curves. The centroids 
are calculated as the center of the curve’s bounding box. 
The distances are calculated with the curves projected in 
the same plane, that is, despising the height between 
planes, which simplifies the distance calculation.  

 

 

 

 

 

 

 

 

 

 

Figure 6: Curves´ Distances in the ∆∆∆∆-connection. 

 

The detailed description of the heuristic is as follows:  

• If � is less than the minimum distance in the matrix, 
no curve is connected; 

• If � is greater than or equal to the maximum 
distance in the matrix, all curves on those two 
consecutive slices are connected; 

• If � is in-between the minimum and maximum 
distances, the following rule is adopted: 

o If the distance in the matrix is less than or 
equal to �, then these curves are connected; 

o If the distance is greater than �, then no 
connection between these two curves will 
occur. 

 
To each two curves that are connected from the defined 
heuristics, these curves are marked in the algorithm as 
“connected”. After correspondence determination, the 
algorithm performs tiling. To the curves that had no 
connection (unmarked curves), a face from its vertices 
(to work as top or base to the visualization) will be 
generated. 

The novelty of �-connection is three-folded:  

• it considers the distances between the center of 
the curves (centroids) in consecutive planes for 
proximity reasoning;  

• it is a conceptually simple solution and;  

• the flexibility that can be found in (i) a 
parameter-controlled reconstruction process; 
(ii) the possibility to use several alternatives for 
distance calculation and; (iii) a variety of ways 
to define the curves´ centers. 

4.1 Implementing ∆∆∆∆-Connection 
Firstly, a curve editor application (Figure 7) was 
implemented that reads and writes the curves in a 
standard XML file format (that will be defined latter). 
The �-connection reconstruction algorithm will use 
these data and perform the heuristics, creating a VRML 
file with the geometrical information of the resulting 
object.  

 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7: A Curve Editor for a Given Slice. 



The VRML file format was chosen as an output format 
as it is an ISO standard for 3D data definition across the 
internet and can be visualized at any web browser with 
the appropriate, usually free of charge, plug in. 

During the implementation, input files containing curves 
from real data [9], ISO standards [10] and vectorized 
data in VTK format [11] were analyzed. The former uses 
specific but not readily explicit data organization. The 
second is a too verbose solution and the latter divided 
the representation of an object in many files, each 
containing a plane, which contradicts the idea of storing 
all the set of planes pertaining to an object in a single 
file.   

The XML file is used as storage format for the edited 
curves and as input to the reconstruction algorithm and it 
was preferred because it could be organized in a way 
that the representation of the curves was made clear and 
as close as possible to the raw data from [9]. 

5. RESULTS AND ANALYSIS 
In order to demonstrate the capabilities of the algorithm, 
curves were created using the curve editor with the 
purpose of generating specific and controlled situations 
(all tests were carried out considering a constant distance 
between slices). A set of curves was confectioned aiming 
to create many possibilities of branching to exercise the 
influence of the � parameter.  

The first set of curves generated (see Figure 8) produced 
many situations of connection and non-connection as 
well as top and bottom faces. 

 

 

 

 

 

 

 

 

 

Figure 8: Reconstructed Test Case. 

In Figure 9, another set of curves at various slices can be 
seen (a) which is also the result of performing �-
connection with � equals to 0. As � increases, more (b) 
and more (c) connections are formed at consecutive 
slices. For a very large value of �, all curves are 
connected. These results are visually and functionally 
similar to those obtained with other approaches (see 

Figure 5) but instead; the distance is Euclidean, fast and 
simple to follow. 

Figure 9: Proving the Concept. 

Once the proof-of-concept was validated, and some 
visualization resources were refined in the application 
(the list of curves that originated the object, its 
wireframe model and the rendered object), the behavior 
of the �-connection with real data was then, evaluated.  

To do this, data available in [9] were converted to XML 
and the Figures 10 to 13 were generated. These figures 
shows at the left-hand side the set of slices used for the 
reconstruction process and, at the right-hand side the 
complete reconstructed and rendered model. 

Figure 10: The reconstruction of a Femur. 

 
 

 

 

 

 

 

 

 

 

Figure 11: The Reconstruction of Veins. 



 

 

 

 

 

 

 

 

 

Figure 12: The Reconstruction of Lungs. 
 

An interesting case to highlight was the reconstruction of 
a heart, presented in Figure 13, formed by a set of 1285 
points distributed in 30 slices.  

 

 

 

 

 

 

 

 

 

Figure 13: The 3D Reconstruction of a Heart. 

 

In Figure 13, one notices that the top region of the model 
possess a fair amount of curves which are close to each 
other if compared to the rest of the model that possesses 
fewer and larger curves. A model with these features 
may have an undesirable result whatever the � value is 
because a given value can be good for large curves but 
generate undesirable connections in the region of much 
smaller curves, as in figure 13(a) where, practically all 
the curves are connected to each other (note the 
connection configuration in X in the superior part of the 
figure 13(a)).  

On the other hand, defining a smaller value of �, in 
order to control the excess of connections between small 
curves (top of the model in Figure 13(b)), may result in 
the lack of connections in the region of larger curves (as 
in the bottom part of figure 13(b)). 

Another analysis that was done was in relation to the 
correspondence parameter � used to generate each one 
of the real examples illustrated. 

Figure 14 shows the minimum and maximum � values to 
each model. The dot in the scale refers to the value of � 
that was chosen as satisfactory to generate the desired 
connections. The lines refer to � values for the femur, 
lungs, hear and veins reconstructions, respectively. One 
notices that, to all cases, the value given to � is small 
(approximately 10%) in relation to the distance interval 
[�min , �max]. This occurs because the connections 
were considered necessary only for those curves that 
were really close to each other.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 14: Chosen values for �. 

 

The case in which � �was farther from the minimum 
distance value was in reconstruction of a femur, where 
the branching only occurs once and most of the slices 
had only one curve that was always interpolated with the 
curve from the next slice.  It can be concluded that, since 
it is desirable to interpolate only the curves that are next 
to each other, the value of � �will have the tendency to be 
small when compared to the distance interval.  

�-connection efficiency was measured and the graphic 
on Figure 15 was generated presenting the elapsed time 
(shown as the vertical axis) registered for several models 
with a different number of points (shown as the 
horizontal axis), up to 40000 generated points. 

The curve in Figure 15 shows that the �-connection 
algorithm has a nearly linear growing pattern with the 
increase of the number of points. The graphic however, 
refers to the total time of the algorithm that, besides the 
correspondence analysis, also deals with the tiling 

      Femur 

      Lungs 

      Heart 

       Veins 



between curves (which was not covered in this paper due 
to the lack of space). 

 

 

 

 

 

 

 

 

 

Figure 15: ∆∆∆∆-connection Time Performance. 

The tiling algorithm used was a straight-forward one that 
aims to connect every single point in one curve to one in 
the corresponding curve of the other slice so that a 
triangular face is generated. The search starts at any 
point and an edge is created. Then, the reference point 
for the edge construction alternate from one curve to the 
other up to all points are connected and all possible 
triangles between the slices are created.  

The experiments were carried out on an AMD Athlon 
1.3 Ghz processor with 512 MB of video memory, 
without a 3D acceleration card. All the data relating to 
the results obtained, as well as the developed application 
and the algorithm' source code, are available at the web 
[12]. 

As a functional analysus, it can be said that the algorithm 
expects the input of a parameter that makes it flexible to 
decide on the result of the reconstructed 3D object, 
feature not commonly available in other solutions. The 
parameter ∆ �is directly related to the distances between 
the centers of the curves, that is, the heuristics infers the 
proximity between the curves (a well accepted heuristic 
for it happens in several solutions in the literature).  

Both the distances calculation and the definition of the 
center of the curves can be done using several alternative 
forms (that weren't explored in this work). To this work 
decisions were taken in order to obtain performance. To 
this end, as stated before, the square of the curves 
distances projected in one of the planes (2D) were used 
on distances comparisons instead of the square-root 
(which is much more time demanding) of the distance in 
the 3D (where there is another axis do compute) and; the 
centroid used was, in fact, the center of the curve´s 

Bounding Box (and not an average of all curve’s points). 
These decisions do not affect the accuracy of the results. 

The � correspondence control value can be chosen at 
random by the user, but the user receives information 
about the limits for better guidance, avoiding the choice 
of the parameter by simple trial-and-error. The �-
connection has also the advantages of being independent 
of the dimensions used to represent the curve; gives the 
same result if executed top-down or bottom-up, and; 
deals exclusively with the correspondence problem 
allowing fine-tuning without affecting other steps of the 
reconstruction process. 

6. CONCLUSION 
A novel solution to the correspondence problem based 
on the heuristic approach of three-dimensional 
reconstruction has been presented. The solution 
considers the Euclidean distance between the centers of 
the curves (centroids) in consecutive planes. This 
solution has speed, conceptual simplicity and, most 
importantly, the flexibility as efficiency criteria. 
Flexibility is a major advantage over other approaches 
and can be found in (i) the control of the reconstruction 
result; (ii) in the possibility to use several alternatives for 
distance calculation; as well as (iii) in a variety of ways 
to define the curves´ centers. 

The tests were performed with data generated by an 
implemented curve editor and also with real data from 
medical images. The algorithm generated satisfactory 
visual results and presented linear performance with the 
increase on the number of points and slices.  

A limitation was observed when the algorithm is applied 
to models with great variability on the size and distance 
between curves, which shows the need for future work, 
experimenting alternatives that allow the definition of 
different values to � for different regions of the model 
and/or a way of automatically changing the value of � 
depending of the size of the curve. For this, however, 
one must further study the concept of what can be 
understood as the size of the curve and how this 
adaptation can occur. 
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